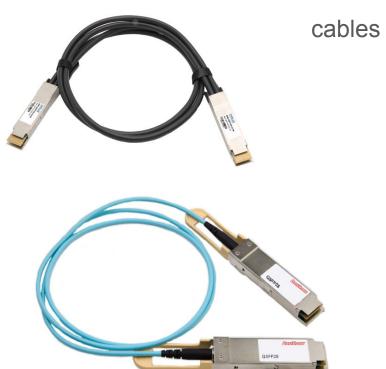
Olivia Introduction


Hardware, Storage, Data staging, Backup

- Interconnect Slingshot
- Olivia Hardware overview
- Olivia Filesystem layout
- Data staging and workflow
- Localscratch on CPU and GPU

Slingshot interconnect

switch

Slingshot interconnect

Slingshot is a high-performance interconnect fabric developed by HPE/Cray for supercomputing, designed to handle high-bandwidth and low-latency needs for applications like AI and High-Performance Computing (HPC)

- Ethernet-based
- High bandwidth
- Low latency
- Adaptive routing
- Congestion control
- RDMA support

Slingshot network

Rosetta Switch 64-port, 200 Gbps

Cassini NIC 200Gbps

1 in cpu node, 4 in GPU node, 1 service node, 2 IO node

Dragonfly topology

All compute connected to switch, and all switch are connected all switch.

Olivia Hardware specification

Compute node 252 (4 node per balde)

AMD EPYC Next Gen Turin CPUs 128 Cores	2	
32GB DDR5-6000 (expected) DIMMs	24	
Slingshot Injection Point 200Gb/s	1	
3.84 TB NVMe	1	

Accelerator node 76 (72 cores, ArmCPU)

NVIDIA GH200 superchips	4				
НВМ3	96 GB				
LPDDR5	120 GB				
Slingshot 200 Gb/s injection points	4				

Service nodes has two different specs

AMD EPYC Genoa 9534 (2.45 GHz, 64 Core) CPUs	2					
64GB DDR5 -4800 DIMMs	24					
960GB NVMe drives	2					
6.4TB NVMe drives	4					
100GE interface	1					
HPE Slingshot SA210S 200Gb/s	1					
AMD EPYC Genoa 9534 (2.45 GHz, 64 Core) CPUs	2					
64GB DDR5 -4800 DIMMs	24					
960GB NVMe drives	2					
6.4TB NVMe drives	4					
100GE interface	1					
HPE Slingshot SA210S 200Gb/s	1					
NVIDIA L40	1					

I/O nodes

AMD EPYC Genoa 9534 (2.45 GHz, 64 Core) CPUs	2	
32GB DDR5 -4800 DIMMs	12	
NVMe boot device	1	
100GE interface	2	
HPE Slingshot SA210S 200Gb/s	2	

	Cab Location x3001			Cab Location x3000		x1001 Front		x1000 Front			Cab Location x3000	
	Cabinet 48u 800x1200		UID	Cabinet 48u 800x1200	UID					UID	48u 800x1200 G2	UID
48	sw-hsn04	48	48	sw-hsn02	48					48	R4K41A (sw-hsn02)	48
47	sw-hsn03	47	47	sw-hsn01	47					47	R4K41A (sw-hsn01)	47
46	R9G63A (scratch)sw-lmn2	46	46	R9G23A Spine (sw-25g02)	46			8 8 8 8 8 8 8 8		46	Spine 25g- R9G23A (sw-25g02)	46
45	R9G63A (scratch)sw-lmn1	45	45	R9G23A Spine (sw-25g01)	45 -			1 2 2 2 2 2 2 2 2 2 2 2	1 2 2 2 2 2 2 2 2 2	45	Spine 25g - R9G23A (sw-25g01)	45
44	R9G63A (project)sw-lmn4	44	44	R9F63A (sw-smn02)	44	3 3 3 3 3 3 3 3 3 3			E E E E E E E	44	R9F63A (sw-smn01)	44
43	R9G63A (project) sw-lmn3	43	43	R9F63A (sw-smn01)	43		0 0 0 0 0 0 0 7	0 4 7 7 7 7 7 7	9 2 9 9 2 9 9	43	R9G13A CDU [sw-10g02]	43
42		42	42		42	0 - 0 - 0 - 0 - 0	0 1 0 0 0 0			42	R9G13A CDU (sw-10g01)	42
41	SCRATCH SMU 1	41	41		41	2 2 2 2 2 2 2 3		11111111	1111111	41		41
40		40	40		40			-1	1111111	40		40
39	SCRATCH MDU 1	39	39		39 -	Ch mids (Charle 7	Charrie 4	Cinacrie 7	39		39
38	CONTOUNDUS	38	38	DL325 (admin3)	38	Chassis 6	Chassis 7	Chassis 6	Chassis 7	38		38
37	SCRATCH MDU 2	37	37	DL325 (admin2)	37					37		37
36	SCRATCH SSU-F 1	36	36	DL325 (admin1)	36					36		36
35	30M1CH 330F 1	35	35	DL325 Fabric Manager (fmn2)	35					35		35
34	SCRATCH SSU-F 2	34	34	DL325 Fabric Manager (fmn1)	34			5 5 5 5 5	5 5 5 5 5	34		34
33	3UWITH 33UF 2	33	33		33 -	340 340 340 340 340	30 30 30 30 30 30	N	20 20 20 20 20 20	33		33
32	SCRATCH IOPS SSU-F 3	32	32	DL385 Gen11 FIO2 (svc9)	32	F F F F F F F F	2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2	5 5 5 5 5 5 7 7	32		32
31	304101101333013	31	31		31	5 5 5 5 5 5 5 5 5	5 5 5 5 5 5 5 5 5 -	4 4 4 4 4 6 6 6	3 3 3 3 3 3 6 6	31		31
30		30	30	DL385 Gen11 FIO2 (svc8)	30	8 8 8 8 8 8 8		9 9 9 9 3 3 3 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30		30
29		29	29		29	9 9 9 9 9 9 9			0 0 0 0 0	29		29
28		28	28	DL385 Gen11 FIO2 (svc7)	28	2 2 2 2 2 2 2 2 2	A S S S S S S S S S S S			28		28
27		27	27		27 -					27		27
26	CLUSTER SMU 2	26	26	DL385 Gen11 FIO2 (svc6)	26	The made 4	The market	Ch made 4	Chards 5	26		26
25		25	25	DL385 Gen11 (UAN4)	25	Chassis 4	Chassis 5	Chassis 4	Chassis 5	25		25
24	CLUSTER MDU 3	24	24	DESIGN CENTER (CANADA)	24					24		24
23		23	23	DL385 Gen11 (UAN3)	23					23		23
22	CLUSTER MDU 4	22	22		22					22		22
21		21	21	DL385 Gen11 (UAN2)	21 -			5 5 5 5 5 5 5	8 8 8 8 8 8 8	21		21
20	CLUSTER SSU-D 1	20	20	The trade desired and other ()	20					20		20
19 18		19	19	DL385 Gen11 (UAN1)	19			8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8	19		19
17	CLUSTER SSU-D 2	18	18		18	8 8 8 8 8 8 8 8 8	2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 2 2	2 2 2 2 2 2 2 2 2	18	DL325 - Admin (admin3)	18
16		16	17		17			Acc Acc Acc	Per Per Per Per	17	DL325 - Admin (admin2)	17
		15	16		16	8 4 9 9 4 9 8 6	9 2 9 9 5 9 6	9 2 9 9 9 9 9	9 4 9 9 4 9 9	16	DL325 - Admin (admin1)	16
15 14	CLUSTER JBOD 2-1	14	15		15 -	تنافرت والالالالالا		الأناف فالفاقا فالناق		15	DL325 - Fabric Mgr (fmn1)	15
13		13	14	DL385 Gen11 FIO3 (svc5)	14					14	User Access Node (uan1)	14
12		12	13 12	D1395 Can11 5103 (mr. f)	13	Cinarde 3	Charrie 3	Chassis 2	Chassis 3	13	Osci Access more parett)	13
11		11	11	DL385 Gen11 FIO3 (svc4)	11	Chassis 2	Chassis 3	UTADS 4	CIICDS 3	12	R9F63A sw-lnm02	12
10	CLUSTERCLUSTER JBOD 2-2	10	10	DL385 Gen11 FIO3 (svc3)	10 -					11	R9F63A sw-inm01	1
9		9	9	52303 ORNIZ FROS (SFCS)	9					10		10
8		8	8	DL385 Gen11 FIO3 (svc2)	8					9		9
7	CUSTER IROD 1.1	7	7		7			3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3	8		
6	CLUSTER JBOD 1-1	6	6	DL385 Gen11 FIO3 (svc1)	6	3 3 3 3 3 3 3		2 2 2 2 2 2 2 2		7		7
5		5	5	R9G63A (scratch)sw-lmn6	5	E E E E E E E E	E E E E E E E E	3 3 3 3 3 3 3 3	5 5 5 5 5 5 5	- 6	SMU 1	
4		4	4	R9G63A (scratch)sw-lmn5	4 -	2 2 2 2 2 2 2 2 2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	4 4 4 4 4 4 4	de de de de de de	5		5
3	CLUSTER JBOD 1-2	3	3	CS00 SMU3	3			Acc Acc Acc	Acc Acc	3	MDU 1	
2	COUNTENTION I'M	2	2	Section 1	2	9 4 9 9 4 9 9 6	9 2 9 9 2 9 6	2 2 2 2 2 2 2	8 2 8 8 8 8 8	2		
1		1	1	CS00 CSU1	1		1 2 2 2 3 3 3 3 3 3 3 3			1	SSU-f 1	
	PDU_0 PDU_1			PDU_0 PDU_1							PDU_0 PDU_1	7
	PDU P9S2SA			PDU P9R85A	-	Charrie 0	Charrie 1	Chassis 0	Chassis 1		PDU P/NP9R85A	
	Top Power			Top Power	-	Chassis 0	Chassis 1	CINDSSU	CIRDAS		Top Power	

File System on Olivia

```
[saerda@uan02.olivia ~]$ df -t lustre -h

Filesystem Size Used Avail Use% Mounted on

2104@kfi,2124@kfi:2090@kfi,2125@kfi:/cluster 2.9P 100T 2.8P 4% /cluster

73@kfi,9@kfi:72@kfi,8@kfi:/flash 477T 452G 472T 1% /cluster/software

2078@kfi,2143@kfi:2056@kfi,2142@kfi:/scratch 1.1P 330T 700T 32% /cluster/work
```

File System on Olivia

Cluster file system

mounted as /cluster

424x10TB SAS HDD disk

Has separate MDS and OSS server

Serving mainly Home, projects

Home will be in backup.

Flash file system

mounted as /cluster/software

24x 30 TB NVMe

Has separate MDS and OSS server

Serving mainly software, gpujobscrach

Scratch filesystem

mounted as /cluster/work

48x30TB NVMe

24x7.68 NVMe

Has separate MDS and OSS server

Serving mainly Work projects(userwork), support

Subjected to clean up at 70%,80%,90% usage

Olivia: File staging

On olivia not all projects have dedicated project storage, most of the projects will have to keep data on NIRD, data has to be moved in between NIRD and Olivia, to achieve this we have two alternatives

Manual staging from NIRD to Olivia

Staging via slurm as batch job

Manual staging

- We need to use IO nodes, svc0[1-5]
- IO nodes can be accessed from login nodes
- IO nodes are physically connected to NIRD network and NIRD filesystem is mounted
- Each IO nodes has 200Gib/s connection to NIRD

Manual staging

NIRD filesystems are presented as following on svc nodes:

/nird/datalake

/nird/datapeak

```
urumqi:~ sardarghalip$ ssh saerda@olivia.sigma2.no
Last login: Mon Dec 1 10:56:28 2025 from 193.69.74.151
[saerda@uan02.olivia ~]$ ssh svc01
Last login: Sat Nov 29 12:56:53 2025 from 10.61.0.6
[saerda@svc01.olivia ~]$ df -t gpfs -h
Filesystem Size Used Avail Use% Mounted on
datalake1 24P 15P 8.3P 65% /data/lake1
projects 18P 12P 6.0P 67% /project/fs1
[saerda@svc01.olivia ~]$ ls /nird/
backup datalake datapeak
```

Manual staging

cp : basic , simple but not efficient.

rsync: recommended, works best with synchronizing folders files, suits well with network transfer

Staging in

```
rsync -avh --progress /nird/datapeak/NSxxxxK/input_data/ /cluster/work/projects/nnxxxxk/job_input/rsync -avh --progress /nird/datalake/NSxxxxK/input_data/ /cluster/work/projects/nnxxxxk/job_input/
```

Staging out

```
rsync -avh --progress /cluster/work/projects/nnxxxxk/job_output/ /nird/datapeak/NSxxxxK/results/rsync -avh --progress /cluster/work/projects/nnxxxxk/job_output/ /nird/datalake/NSxxxxK/results/
```

Usa tmux instead of nohup

We recommend to use tmux session.

tmux new -s \$session

Tmux Is

tmux at -t \$session

For detaching (ctrl+b)+d

Pros:

- Simple and transparent workflow
- Full user control over data management

Cons:

- Requires manual effort
- High risk of human error
- No automation
- Inefficient for large datasets or batch jobs

Staging files via Slurm

We have configured slurm such that users can integrate the whole data moving process in to slurm script.

Add following lines for staging In:

#STAGE IN /nird/datalake/NSxxxxK/some/path /cluster/work/project/nnxxxxk/another/path

Staging files via Slurm

Each line should contain one from-path and one to-path.

One can specify a single file, or a directory, which will be copied recursively.

When the job has been submitted, the queue system will copy data, and will wait until the files have been copied before starting the job.

While the file copying is running, the job will be pending with reason BurstBufferStageIn.

If the copying fails (for instance because the file or directory doesn't exist), the job will be left pending.

The job must then be cancelled, and resubmitted after fixing the problem.

Staging files via Slurm

Staging out

Add following lines for staging out:

#STAGE OUT /cluster/work/project/nnxxxxk/some/path /nird/datalake/NSxxxxK/another/path

When a job has finished, the files will be copied to NIRD. While the files are being copied, the job will be in state completing

If the copying fails (for instance because the file or directory doesn't exist), the job will be left in state STAGE_OUT (SO), user has to requeue the job before it can be deleted.

Pros:

- Fully automated
- Avoid human error

Cons:

- Can make slurm script little complicated
- Everything is controlled by slurm

Run jobs without staging data

On this approach, jobs are executed directly on the compute nodes, accessing input data stored on NIRD without copying it to the local work directory.

- Submit directly from login node
- Datapeak and Datalake is mounted read-only on compute.
- Output has to be copied back after the job
- Recommended for small or moderate data volumes and quick analyses where data staging is unnecessary
- Simple workflow (no staging)

IMPORTANT: It is not recommended for high-throughput or I/O-intensive workflows where parallel data access could impact performance.

Best Practices for Data Managemen

- Use the I/O nodes exclusively for data transfer and preparation tasks.
- Avoid running computationally intensive jobs on these nodes.
- Regularly transfer output data to NIRD Data Lake or NIRD Data Peak for mid-term storage.
- Remove unnecessary temporary data from Olivia (work) to optimize storage usage.

Localscrach on CPU nodes and GPU nodes

CPU nodes has localscrach

Each CPU compute nodes has a local nyme disk which is used by slurm as \$scrach, this is only accessible by the user running the job.

```
/localscratch/$SLURM_JOB_ID ($SCRATCH)
```

```
c1-1:~ # df -h |grep nvme
/dev/nvme0n1p1 3.5T 3.6G 3.5T 1% /localscratch
c1-1:~ #
```

GPU nodes does not have localscrach

GPU nodes does not have local disk, it uses shared file system for slurm \$SCRACH

```
/cluster/software/gpujobscratch/jobs/$SLURM_JOB_ID ($SCRATCH)
```

```
gpu-1-1:~ # df -h /cluster/software/gpujobscratch/
Filesystem Size Used Avail Use% Mounted on Size Used Avail Use% Mounted on Size Table 477T 452G 472T 1% /cluster/software
```

Localscrach

All jobs in the *normal* partition (CPU nodes) on **Olivia** get their scratch area on local disk. One does not have to specify a size for this, and all jobs on the node share the available storage. The size of the localscratch disk on Olivia compute nodes is 3.5 TiB.

- less risk of interference from other jobs
- the scripts do not need to clean up temporary files (auto delete)
- It can be hard to debug jobs that fail (auto delete)
- special commands to copy files back in case the job script crashes before it has finished
- If the main node of a job crashes, everything is lost.

Fram home and projects

[saerda@svc01.olivia ~]\$ ls /nird/backup/fram/home

[saerda@svc01.olivia ~]\$ ls /nird/backup/hpc/fram/projects

Nird Backup

[saerda@svc01.olivia /nird/datapeak/NS9997K/.snapshots]\$ Is /nird/datapeak/NS9997K/.snapshots/

[saerda@svc01.olivia /nird/datapeak/NS9997K/.snapshots]\$ Is /nird/datalake/NS9997K/.snapshots/

Questions?

Thank you!